EUROPEAN COMMON CURRICULUM FOR BACHELOR’S MICROBIOLOGY EDUCATION
FEMS EDUCATION GROUP AND CONTRIBUTING AUTHORS

Andrey Sibirny, FEMS Director for Education and Public Engagement
Institute of Cell Biology, National Academy of Sciences, Lviv, UKRAINE

Armen Trchounian, Principal of Working Group
Department of Biochemistry, Microbiology and Biotechnology,
Yerevan State University, Yerevan, ARMENIA

Maria Francisca Colom Valiente,
Department of Plant Production and Microbiology
Miguel Hernandez de Elche University, Alicante, SPAIN

Paul Cos
Department of Pharmaceutical Sciences
University of Antwerpen, Antwerpen, BELGIUM

Alexander Netrusov
Department of Microbiology
Lomonosov Moscow State University, Moscow, RUSSIAN FEDERATION
COMMON CURRICULUM ON MICROBIOLOGY

Microbiology, a science about microorganisms, is one of the major subjects and trends in training of biologists, biotechnologists, bioengineers, pharmacists and medical doctors at the level of Bachelor of Science Programs in colleges and universities of our time and widely distributed and adopted over Europe and the world as well. The study of microbiology will allow expanding the scientific horizons of students and gaining the knowledge necessary for follow-up.

Microbiology as a separate subject is taught in the training of specialists at B.Sc. Programs of

- Biology, Biochemistry and Biotechnology, Medical Biochemistry, Biophysics and Bioinformatics
- Bio-based economy, Biotechnology and Food Safety
- Pharmacy, Human and Veterinary Medicine and other Health Sciences.

Microbiology education has a long history and experience but should be permanently improved due to:

- New achievements in biology, basic and applied microbiology problems,
- Mobility of students and developing exchange programs especially in framework of the Bologna process in Europe,
- The labor market demands for microbiology specialists.

This all requires the development of a common (international) curriculum for training in Microbiology at B.Sc. level with common requirements or international standards and the general program or algorithm of microbiology teaching and training.

CURRICULUM GUIDELINES

The guidelines are not meant to be a mandate or an infringement upon academic freedom, but are curriculum recommendations.

LEARNING GOALS (MOTIVATION TO TEACH MICROBIOLOGY AND TRAINING MICROBIOLOGISTS)

Learning of Microbiology should be well motivated according to demands of different fields of human life and civil society. The goals are quite different but should be combined in one subject having academic and practical relevance. They can be:

For bio-based economy, industry and market:

- Using microorganisms in food products and pharmaceutical industry,
- Developing bio-energy production, including bio-ethanol, bio-methane and bio-hydrogen;

For science and environment:

- Scientific description and preservation of wide biodiversity, including microorganisms, in different regions over Europe;
 - Isolation and study of microorganisms in different ecological environment, discovering their role in nature and especially in ecological niches;

For medicine and health:
Scientific description of microbiota and microbiome, and its role in the physiology of humans and animals,

Understanding the world-wide impact of antimicrobial resistance,

Monitoring and control of potentially dangerous microorganisms in nature and among habitants, developing new strategies against different pathogens,

Control of biosafety especially of food imported and water supply;

For elementary, secondary and higher education:

Biology education and general nature including life concepts (especially at secondary and high schools).

DIRECTIONS, MODULES AND GENERAL PROGRAM OF MICROBIOLOGY

Microbiology teaching at B.Sc. level appears generally in TWO DIRECTIONS (areas) –

(1) General (Basic) Microbiology and (2) Applied or Medical Microbiology.

It is proposed that the new program of General Microbiology may include THREE MODULES:

(1) the structure of the microbial cell, physiology, biochemistry and genetics of microorganisms;

(2) systematics, biodiversity and ecology of microorganisms;

(3) impact of microorganisms; types, methods and directions of microbial biotechnology; microorganisms as members of the physiology and agents of pathogenesis of plants, animals and humans.

It is important to highlight the objectives and output to ensure practical relevance.

PROGRAM ON GENERAL MICROBIOLOGY

Introduction and history of Microbiology

Introduction and major themes of microbiology. Microorganisms and their environment. The impact of microorganisms in nature and human life.

Structure of microorganisms

Prokaryotic and eukaryotic organisms.

The role of various chemical compounds in the formation of cell structures and the functioning of bacteria. The chemical composition, synthesis, structure and functions of the bacterial and archaeal cell wall. Peptidoglycan. Differences in the cell walls of Gram-positive and Gram-negative bacteria, acid-fast bacteria. Bacteria without cell wall like Chlamydia and Mycoplasma. Bacterial spheroplasts and protoplasts: production methods, properties, applications. L-forms of bacteria and their characteristics. The chemical composition, organization and functions of the surface structures of the bacterial cell (capsules, covers, villi). The cytoplasmic membrane: chemical nature, structure and functions. Transport of substances through the cytoplasmic membrane. Derivatives of the cytoplasmic membrane and their functions. The cytoplasm of bacteria; chemical composition and

Eukaryotic microbial cells (yeasts, filamentous fungi, protozoa and algae); major eukaryotic cell structures: the nucleus, mitochondria, chloroplasts, peroxisomes and others.

Biochemistry of microorganisms
Types and main purposes of metabolic reactions in microbes, general characteristic and features. Energy metabolism. Sources of energy in microorganisms; energy rich compounds. Chemosynthesis and photosynthesis.

Aerobic respiration is one type of energy metabolism. Tricarboxylic acid cycle (Krebs or citric acid cycle), anaplerotic pathways, including glyoxylate pathway. Anaerobic respiration. Respiratory chains: complexes and electron transfer mechanisms. Donors and electron acceptors used by various microorganisms in anaerobic respiration; nitrate, sulphate and fumarate respiration.

Chemiosmotic coupling and the synthesis of ATP in the respiratory and photosynthetic chains of microorganisms.

Assimilation of biogenic elements.

Biosynthesis of amino acids by bacteria; major predecessors and biosynthesis pathways. The biosynthesis of carbohydrates, nucleotides, fatty acids and phospholipids. Assimilation of carbon dioxide by autotrophic and heterotrophic microorganisms.

Secondary metabolism. Production of antibiotics, vitamins and alkaloids.

Genetics of microorganisms
Microbial genome.

The variability of microorganisms. Evidence of the mutational nature of changes in hereditary traits in bacteria. The concept of adaptation of microorganisms. Modification variability in bacteria.

Growth and physiology of microorganisms

Microorganisms growth and cell division.

Nutrition of microorganisms. Phototrophs and chemotrophs. Autotrophs and heterotrophs. Chemicals as nutrient substrates. Enzymatic mechanisms of microorganisms, providing utilization of

Antimicrobial compounds; their nature and mechanism of action on the microbial cell. The use of antimicrobials for practical purposes. Methods for determining the sensitivity of microorganisms to antimicrobials. Antimicrobial resistance: mechanisms. Importance of adequate use of antimicrobials to avoid the selection of multi-resistant microorganisms.

Systematics, biodiversity and ecology of microorganisms

Regional biodiversity of microorganisms and environmental problems.

Viruses

Impact of microorganisms. Introduction to microbial biotechnology

Pathogenic microorganisms

Importantly, a certain part of the program (up to a quarter of volume) for Microbiology can include regional microbiology problems associated with microbial diversity, prevention of microbial diseases and environmental problems.

Thus, particular attention is paid to prokaryotic microorganisms (archaea and bacteria), since eukaryotic microorganisms (microscopic fungi, algae and protozoa) are also studied in the other courses. A variety of physiological, biochemical and genetic properties of microorganisms is considered in the context of their distribution and existence in various ecological niches.

ASSESSMENT (IMPLEMENTATION): TEACHING AND LEARNING METHODS

Current trends of assessment (teaching/learning) are to combine new and interdisciplinary subjects with professional ones for training students according to the requirements of the labor market (food and beverages industry, pharmaceutical companies, clinical and safety labs, monitoring centers, water supply companies, education etc) and apply active learning methods.

Implementation of curriculum should include

- interactive sessions – instead of formerly traditional lectures,
- multiple-choice questions in class using a personal response system and new learning methods and approaches
- Core concepts, fundamental statements; New discoveries and revisions of old concepts and theories

SOME CORE CONCEPTS AND FUNDAMENTAL STATEMENTS

SUBJECTS ESSENTIAL FOR LEARNING GENERAL MICROBIOLOGY

Microbiology learning should develop ability to communicate and collaborate with other disciplines.

Some subjects have close relation to Microbiology so they are essential for learning Microbiology; they would be: Before learning of Microbiology

- Organic Chemistry,
ALGORITHM OF GENERAL MICROBIOLOGY

The algorithm of General Microbiology includes the problematic (interactive, student-centered and engaged learning) lectures, practical classes and laboratory work, tests, and various forms of individual self-work. The ratio of lectures and laboratory work is offered approximately EQUAL.

More attention has to be paid to the development of laboratory practical skills. Laboratory work must be carried out by general (international) protocols recommended by laboratory manuals, which are acceptable for Europe or will be developed. The following reference books of Microbiology lab manuals might be recommended:

Also important are consistent actions for the implementation of the algorithm to include assessment of the knowledge and learning feedback.

Moreover, research/research methods are of interest nowadays and may (should) be included as Individual work (literature review, popular (cartoon) presentation, experimental study, etc.) in the program for Microbiology as a subject

- at lab
- outside (at home).

With all this, the credits of 3-6 are recommended for General Microbiology at least.

SKILLS TYPES INCLUDING LABORATORY

Successful microbiology work demands reliable precision in

- safe handling of microorganisms and aseptic technique,
- sampling and identifying microbes,
- observing their characteristics and behavior,
- applying biological theories to observations
- drawing accurate conclusions based on experimental data, known facts and concepts, original research (findings).
General microbiology lab specific skills to be acquired and developed as:

- Preparation of nutrient media and culturing of bacteria and yeasts: Inoculation and plating,
- Using of a light microscopy to characterize and identify bacteria,
- Application and performing physiological and biochemical tests to differentiate bacteria,
- Extracting DNA from bacteria and eukaryotic microorganisms,
- Operating of standard and new microbiology equipment,
- Processing data.

Therefore, Microbiology learning has to develop skills including practical (laboratory) ones in different aspects for:

- Applying knowledge and understanding; Is capable to analyze the basic experimental facts
- Communication, ICT and numeracy skills; ability to apply or to transfer the acquired knowledge and methods to other specialty areas or areas of biology specialization
- Generic cognitive skills (including judgments): applying critical thinking, analysis and judgement to the problems of Biology.